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2.2 LOCAL OPERATIONS 

A local operation involves the production of an output value as a function of the value(s) at the 

corresponding locations in the input layer(s). These operations can be considered point 

operations when performed on raster data, i.e. they operate on a pixel and its matching pixel 

position in other layers, as opposed to groups of neighbouring pixels. They can be grouped into 

those which derive statistics from multiple input layers (e.g. mean, median, minority), those 

which combine multiple input layers, those which identify values that satisfy specified criteria 

or the number of occurrences that satisfy specified criteria (e.g. greater than or less than), or 

those which identify the position in an input list that satisfies a specified criterion. All types of 

operator previously mentioned can be used in this context. Commonly they are subdivided 

according to the number of input layers involved at the start of the process. They include 

primary operations where nothing exists at the start, to n-ary operations where n layers may be 

involved; they are summarized in Table 1.3 and illustrated in Fig. 1.3. 

 

Fig. 2.3. Classifying map algebra operations in terms of the number of input layers and some 

examples. 

2.2.1 Primary operations 

This description refers primarily to operations used to generate a layer, conceptually from 

nothing, for example the creation of a raster of constant value, or containing randomly 

generated numbers, such as could be used to test for error propagation through some analysis. 

An output pixel size, extent, data type and output DN value (either constant or random between 

set limits) must be specified for the creation of such a new layer. 
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1.2.2 Unary operations 

These operations act on one layer to produce a new output layer and they include tasks such as 

rescaling, negation, comparison with other numbers, application of functions and 

reclassification. Rescaling is especially useful in preparation for multi-criteria analysis where 

all the input layers should have consistent units and value range: for instance, in converting 

from byte data, with 0 to 255 value range, to a percentage scale (0-100) or a range of between 

0 and 1, and vice versa. Negation is used in a similar context, in modifying the value range of 

a dataset from being entirely positive to entirely negative and vice versa. Comparisons create 

feature grids: the places where the comparison is true can be considered features on the earth's 

surface.  They map the regions where a logical condition (the comparison) holds.  These could 

be regions where, say, ozone concentrations exceed a threshold, ocean depths are below a 

certain target, or land use equals a given code. Mathematical functions are useful for changing 

the visualization of a grid.  An equal interval classification using the square roots of the values 

will differ from an equal interval classification of the values themselves, for 

instance.  Functions are also important as intermediate steps in many models. Reclassification 

is especially significant in data preparation for spatial analysis, and so deserves rather more in-

depth description, but all these activities can be and are commonly carried out in image 

processing systems. 

To illustrate different applications succinctly, suppose that three grids appear in the current 

view: "Integer" is an integer grid, "Float" is a floating-point grid, and "Indicator" is an integer 

grid containing only 0, 1, and NoData values.  A value of 0 can be interpreted as a logical 

"false" and a value of 1 as a logical "true".  In practice, of course, we will replace these names 

by the names of our themes. 

• Rescale a grid: that is, Multiply all its values by a constant value. 

[Float] * 3.1415927 Multiply all values by Pi 

[Integer].Float * (39.37/12) Convert meters to feet 

[Integer] * (-1) Negate all values 

Not [Indicator] Negate all logical values: 0 becomes 1, 1 becomes 0 
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• Compare a grid to a constant value. The result of a comparison is true, 0 where the 

comparison is false, and NoData where the original value is NoData 

[Float] < 1 Returns 1 where values are less than 1, otherwise returns 0 

[Integer] = 0 Converts all zeros to ones and all other values to zeros 

 

• Apply a mathematical (or logical) function to a grid, cell by cell. 

[Float].Cos Computes the cosine of each value (interpreted as radians). 

[Float].Int Rounds all values and converts the result to an integer grid. 

[Float].Sqrt Computes the square root of each value.  Negative values return NoData (because 

the square root is not defined for negative values). 

[Float].IsNull Returns 1 at all cells with NoData values, otherwise returns 0. 

 

1.2.2.1 Reclassification 

This involves the process of reassigning a value, a range of values, or a list of values in a raster 

to new output values, in a new output raster. If one class (or group or range of classes) is more 

interesting to us than the other classes, its original values can be assigned a specific value and 

all the others can be changed into a different (background) value. This involves the creation of 

a discrete raster from either a continuous one or another discrete raster. Reclassification can be 

applied to both vector and raster objects. 

In the case of discrete raster data, a reclassification may be required to produce consistent units 

among a set of input raster images, in which case a one-to-one value change may be applied. 

The output raster would look no different, spatially, from the input, having the same number 

of classes, but the values would have changed. 

Different classes or types of feature may be reclassified according to some criteria that are 

important to the overall analysis. During the reclassification process, weighting can be applied 

to the output values to give additional emphasis to the significant classes, and at the same time 

reducing the significance of other classes. 



 

4
 

The example in Fig. 1.4a shows a discrete raster representation of a geological map in which 

nine lithological units are coded with values 1 to 9 and labelled for the purposes of presentation, 

according to their name, rock type and ages. For the purposes of some analysis it may be neces-

sary to simplify this lithological information, for example according to the broad ages of the 

units, PreCambrian, Palaeozoic and Mesozoic, for instance. The result of such a simplification 

is shown in Fig. 1.4c; now the map has only three classes and it can be seen that the older rocks 

(Precambrian and Palaeozoic) are clustered in the south-western part of the area, with the 

younger rocks (Mesozoic) forming the majority of the area as an envelope around the older 

rocks. So the simplification of the seemingly quite complex lithological information shown in 

Fig. 1.4a has revealed spatial patterns in that information which are of significance and which 

were not immediately apparent beforehand. Fig. 1.4d shows a second reclassification of the 

original lithological map, this time on the basis of relative permeability. The information is 

again simplified by reducing the number of classes to two, impermeable and permeable. Such 

a map might form a useful intermediary layer in an exercise to select land suitable for waste 

disposal but also illustrates that subjective judgements are involved at the early stage of data 

preparation. In the very act of simplifying information, we introduce bias and, strictly speaking, 

error into the analysis. We also have to accept the assumptions that the original classes are 

homogeneous and true representations everywhere on the map, which they may not be. In 

reality there is almost certainly heterogeneity within classes and the boundaries between the 

classes may not actually be as rigid as our classified map suggests. 

Continuous raster data can also be reclassified in the same way. The image in Fig. 1.5a shows 

a DEM of the same area with values ranging between 37 and 277, representing elevation in 

meters above sea level. Reclassification of this dataset into three classes of equal interval to 

show areas of low, medium and high altitude produces the simplified image in Fig. 1.5b. 

Comparison with Fig. 1.5b shows that the areas of high elevation coincide with the areas where 

older rocks exist at the surface in the south-west of the area, again revealing spatial patterns 

not immediately evident in the original image. Reclassification of the DEM into three classes, 

this time with the classes defined according to the natural breaks in the image histogram (shown 

in Fig. 1.6), produces a slightly different result, Fig. 1.5c. The high-elevation areas are again 

in the south-west but the shape and distribution of those areas are different. This demonstrates 

several things. Firstly, that very different results can be produced when we simplify data so 

that (and secondly) we should be careful in doing so, and, thirdly, that the use of the image 
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histogram is fundamental to the understanding of and sensible use of reclassification of 

continuous raster data. 

Reclassification forms a very basic but important part of spatial analysis, in the preparation of 

data layers for combination, in the simplification of layer information and especially when the 

layers have dissimilar value ranges. Reclassification is one of several methods of producing a 

common range among input data layers that hold values on different measurement scales. 

 

Fig. 1.4 (a) Discrete rastFig.er representation of a geological map, with nine classes 

representing different lithologies; (b) one-to-one reclassification by age order (1 representing 

the oldest, 9 the youngest); (c) a reclassified and simplified version where the lithological 

classes have been grouped and recoded into three broad age categories (Pre-Cambrian, 

Palaeozoic and Mesozoic); (d) a second reclassified version where the lithologies have been 

grouped according to their relative permeability, with 1 representing impermeable rocks and 0 

permeable; such an image could be used as a mask. (Source: Liu and Mason, 2009) 
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Fig. 1.5. (a) A DEM; (b) a DEM reclassified into three equal interval classes; and (c) a DEM 

reclassified into three classes by natural breaks in the histogram (shown in Fig. 1.6). 

 

Fig. 1.6. Image histogram of the DEM shown in Fig. 1.5a and the positions of the 

reclassification thresholds set by equal interval and natural break methods (shown in Fig. 1.5b 

and c, respectively). 

1.2.3 Binary operations 

Binary numeric operations act on ordered pairs of numbers.  Likewise, binary grid operations 

act on the pairs of numbers obtained in each set of matching cells.  The resulting grid is defined 

only where the two input grids overlap. 

Suppose there are several floating-point grids represented by themes named "Float", "Float1", 

"Float2", and so on; with a similar supposition for integer and logical grids. 
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• Mathematical operators 

[Float] + [Integer] Converts the values in [Integer] to floats, then performs the additions. 

• Logical operators 

[Float1] < [Float2] Returns 1 in each cell where [Float1]'s value is less than [Float2]'s value; 

otherwise, returns 0. 

[Indicator1] And [Indicator2] Returns 1 where both values are nonzero otherwise returns 0. 

This description refers to operations in which there are two input layers, leading to the 

production of a single output layer. Overlay refers to the combination of more than one layer 

of data, to create one new layer. The example shown in Fig. 1.7 illustrates how a layer 

representing average rainfall, and another representing soil type, can be combined to produce 

a simple, qualitative map showing optimum growing conditions for a particular crop. Such 

operations are equivalent to the application of formulae to multiband images, to generate ratios, 

differences and other inter-band indices and as mentioned in relation to point operations on 

multi-spectral images, it is important to consider the value ranges of the input bands or layers, 

when combining their values arithmetically in some way. Just as image differencing requires 

some form of stretch applied to each input layer, to ensure that the real meaning of the 

differencing process is revealed in the output, here we should do the same. Either the inputs 

must be scaled to the same value range, or if the inputs represent values on an absolute measure-

ment scale then those scales should have the same units. 

The example shown in Fig. 1.7 represents two inputs with relative values on arbitrary nominal 

or ordinal (Fig. 1.7a) and interval (Fig. 1.7b) scales. The resultant values are also given on an 

interval scale and this is acceptable providing the range of potential output values is understood, 

having first understood the value ranges of the inputs, since they may mean nothing outside the 

scope of this simple exercise. 

Another example could be the combination of two rasters as part of a cost-weighted analysis 

and possibly as part of a wider least cost pathway exercise. The two input rasters may represent 

measures of cost, as produced through reclassification of, for instance, slope angle and land 

value, cost here being a measure of friction or the real cost of moving or operating across the 

area in question. These two cost rasters are then aggregated or summed to produce an output 

representing total cost for a particular area (Fig.1.8). 
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Fig. 1.7. An example of a simple overlay operation involving two input rasters: (a) an integer 

raster representing soil classes (class 2, representing sandy loam, is considered optimum); (b) 

a floating-point raster representing average rainfall, in metres per year (0.2 is considered 

optimum); and (c) the output raster derived by addition of a and b to produce a result 

representing conditions for a crop; a value of 2.2 (2 þ 0.2), on this rather arbitrary scale, 

represents optimum growing conditions and it can be seen that there are five pixel positions 

which satisfy this condition. 

 

Fig. 1.8 (a) Slope gradient in degrees; (b) ranked (reclassified) slope gradient constituting  the 

first cost or friction input; (c) ranked land value (produced from a separate input land-use raster) 

representing the second cost or friction input; and (d) total cost raster produced by aggregation 

of the input friction rasters (f1 and f2). This total cost raster could then be used within a cost-

weighted distance analysis exercise. 

1.2.4 N-ary operations 

Here we deal with a potentially unlimited number of input layers to derive any of a series of 

standard statistical parameters, such as the mean, standard deviation, majority and variety. 

Ideally there should be a minimum of three layers involved but, in many instances, it is possible 

for the processes to be performed on single layers; the result may, however, be rather 

meaningless in that case. The more commonly used statistical operations and their func-
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tionalities are summarized in Table 1.4. As with the other local operations, these statistical 

parameters are point operations derived for each individual pixel position, from the values at 

corresponding pixel positions in all the layers, rather than from the values within each layer. 

Table 1.4.  Summary of local pixel statistical operations, their functionality and 

input/output data format. 

Statistic Input format Functionality Data type 

Variety 

  

  

  

  

Mean 

Only rasters. If a 

number is input, it 

will be converted 

to a raster constant 

for that value 

Reports the number of different of 

different DN values occurring in the 

input rasters 

  

  

Reports the average DN value among 

the input rasters 

Output in integer 

  

  

  

  

Output is floating 

point 

Standard 

deviation 

Rasters, numbers 

and constants 

Reports the standard deviation of the 

DN values among the input rasters 

Output is floating 

point 

Medium 

  

  

  

  

  

  

Sum 

  

Range 

  

Maximum 

  

Minimum 

  

  

  

  

  

  

  

  

Minority 

  

  

  

  

  

  

  

  

  

  

  

  

  

Only rasters. If a 

number is input, it 

will be converted 

to a raster constant 

for that value 

  

  

  

  

  

  

  

  

  

Reports the middle DN value among the 

input raster pixel values. With an even 

number of inputs, the values are ranked 

and the middle two values are averaged. 

If inputs are all integer, output will be 

truncated to integer 

Reports the total DN value among the 

input rasters 

 Reports the difference between 

maximum and minimum DN 

Reports the highest DN value among 

the input rasters 

Reports the lowest DN value among the 

input rasters 

 Reports the DN value which occurs 

most frequently among the input rasters. 

If no clear majority, output = null, for 

example if there are three inputs all with 

different values. If all inputs have equal 

value, output=input  

Reports the DN value which occurs 

least frequently among the input rasters. 

If no clear minority, as majority 

If only two inputs, where different, 

output= null. If all inputs equal, output 

= input. If only one input, output= input 

  

  

  

  

  

  

  

  

  

  

  

  

  

If inputs are all 

integer, output 

will be integer, 

unless one is a 

float, there the 

input will be a 

float 
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1.2.4.1 Local statistics 

When we have many related grids defined in the same region, we often want to assess change: 

at each cell, how varied are the grid results?  How large do they get?  How small?  What is the 

average?  These questions make sense for numerical data. 

For grids with ordinal data--that is, values that can be ordered, but which may not have any 

absolute meaning--you can still ask about order statistics.  These are the relative rankings of 

values within the ordered collections of values observed at each cell. 

For grids with categorical data, you might want to know at each cell whether one category 

predominates throughout the collection of grids and how many different categories actually 

appear at the cell's location. 

 

In all these cases, imagine a stack of 

grids with common mesh. 

Fig. 1.9. (a) stack of grids with common mesh. 

 

 

At each cell location there is a stack of values, one for each grid. 

The N-ary operators create a new grid whose values depend on the 

stack of input data at each cell location. 

Fig. 1.9. (b) New grid by N-ary operator. 
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The Spatial Analyst syntax for some of these requests is strange, because it wants to force 

expressions into the form "aGrid. Request (list of other grids)". This is inherently asymmetric 

because it singles out one grid in the collection to play the role of the object ("aGrid") to which 

the calculation is applied and leaves the other grids in the role of a list of arguments ("list of 

other grids").  Despite this syntax, for some requests, such as the local statistics, there is no 

asymmetry in the calculation itself: all the grids are equivalent.  For some other requests, there 

is an asymmetry in the calculation: one grid plays a special role.    

Spatial Analyst constructs lists with curly braces {} and separates the elements by commas. 

• Compute local statistics 

[Float]. LocalStats (#GRID_STATYPE_MAX, {[Float1], [Float2], [Float3]})  Computes the 

largest value among four grids. 

[Float]. LocalStats (#GRID_STATYPE_MEDIAN, {[Float1], [Float2]})  Computes the 

median of three values. 

[Integer]. LocalStats (#GRID_STATYPE_MAJORITY, {[Integer1], [Integer2]})  Computes 

the value occurring the most times (out of the three input values at each cell).  If two or more 

values occur an equal number of times, Spatial Analyst returns NoData. 

The Majority statistic evidently is not very useful when many ties occur: that is, when there are 

many cells where two or more values occur equally often. 

• Compare one grid (a “base’ grid) to many others simultaneously 

[Float]. Grids Greater than ({[Float1], [Float2], [Float3], [Float4]}) For each base cell in 

[Float], computes the number of times corresponding cells from [Float1], ..., [Float4] exceed 

(and do not equal) the base cell’s value. There is a corresponding Grids Less Than operator. 

• Combine the values of two grids based on values at a third grid 

[Indicator]. Con ([Float1], [Float2]) Creates a grid with the values of [Float1] where [Indicator] 

is nonzero and with the values of [Float2] where [Indicator] is zero. 

The Con request is especially useful. The result of Con, by default, is the second grid ([Float2] 

or [Mosaic] in the examples).  However, at cells where [Indicator] is true, the values of the first 

grid ([Float1] or [Average]) are "painted" over the default values.  Thus, the Con request is a 

natural vehicle for selectively editing grids. 
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